10/30/2006

8.5多項式曲線適配法

多項式曲線適配法可以利用polyfit完成。利用現有之資料組合[x,y]以求最佳之多項式曲線,其語法如下:


p = polyfit(x,y,n)
[p,S] = polyfit(x,y,n)
[p,S,mu] = polyfit(x,y,n)


其中[x, y]為資料組,n為多項式之最高階數,p則是所得多項式之係數向量。S則為結構矩陣,其下有R、df、normr等欄位,代表QR之分解結構、自由度及副變量。

範例:


這個例子是利用現有資料適配erf(x)函數,並利用x之多項式表示。這個例子雖然不很適當,因為erf(x)函數有其特定範圍,一般多項式則沒有範圍。故利用資料適配的結果可能不會很理想。

開始時先產生x之向量點,該其均勻分佈於一個區間,然後使用erf(x)函數進行估計:

x = (0: 0.1: 2.5)';
y = erf(x);

設多項式最高階n=6,則

p = polyfit(x,y,6)

得到之結果,多項式係數為:

p =

0.0084 -0.0983 0.4217 -0.7435 0.1471 1.1064 0.0004


為瞭解所得之多項式與實際值有多接近,可以使用polyval這個求值的函數,同時將其作成表格作比較,最後一項則為誤差:


f = polyval(p,x);

table = [x y f y-f]

table =

0 0 0.0004 -0.0004
0.1000 0.1125 0.1119 0.0006
0.2000 0.2227 0.2223 0.0004
0.3000 0.3286 0.3287 -0.0001
0.4000 0.4284 0.4288 -0.0004
...
2.1000 0.9970 0.9969 0.0001
2.2000 0.9981 0.9982 -0.0001
2.3000 0.9989 0.9991 -0.0003
2.4000 0.9993 0.9995 -0.0002
2.5000 0.9996 0.9994 0.0002

在這個區間內,看起來其適配情形還不錯,可以到小數三、四位。但不要高興太早,因為超出此範圍後,多項式會如脫韁之馬,很快就露出馬腳。利用下面程式內容,可以立即用圖形進行比較其誤差之大小,結果則請讀者自行執行。


x = (0: 0.1: 5)';
y = erf(x);
f = polyval(p,x);
plot(x,y,'o',x,f,'-')
axis([0 5 0 2])

沒有留言:

張貼留言